职工创新·

经小电抗接地的 220 kV / 110 kV 变压器小电抗值选取

史建省

（国网山东省电力公司潍坊市寒亭区供电公司，山东 潍坊 261100）

摘要：220/110 kV 变压器中性点经小电抗接地方式不仅可以解决变压器的中性点过电压问题，还可以限制单相短路电流，减轻故障对变压器的短路冲击，同时消除非全相运行时产生的弧光过电压、谐振过电压，具有明显的优越性。而小电抗值的选取是否合理，直接影响到电网的安全稳定运行，因此针对中性点经小电抗接地方式中电抗值的选取，有必要进行深入研究。在详细介绍小电抗值选取需要考虑因素的基础上，从多个角度进行小电抗值，并给出小电抗值的定量计算方法。计算及仿真结果表明，使用该方法选取的小电抗值能够在不影响零序电流保护准确性的情况下，起到限制变压器中性点过电压与单相短路电流的作用。

关键词：中性点；经小电抗接地；过电压

The Choose of Reactance in the Mode of the Neutral Grounding Via Small Reactor for 220 kV/110 kV Power Transformer

SHI Jiansheng

(State Grid Weifang Hantong Power Supply Company, Weifang 261100, China)

Abstract: The mode that 220/110 kV transformer neutral grounding via small reactor can not only solve the problem that transformer neutral point overvoltage potentially caused by “part of the transformer grounding lost”, limiting the single-phase short circuit current, reducing the short circuit impact on the transformer but also eliminating the generation of incomplete phase operation arc overvoltage and resonant overvoltage insulation. This grounding method has very strong superiority. Whether the selected small resistance value is reasonable or not does not directly affect the safe operation of the power grid. Therefore, deep understanding to the mechanism is essential. However, small reactance values are related to many factors, few articles can explicitly pointed out. In this paper, the small reactance value selection factors to be considered and the quantitative calculation of the size of small reactance are introduced detailly. The result of the simulation and calculation show that using this method to select the small reactance can limit the over voltage of the neutral point of the transformer, limiting the short–circuit current of the single phase without affecting the accuracy of the zero–sequence current protection action.

Keywords: neutral; grounding via small reactor; overvoltage

0 引言

对于经小电抗接地的变压器，仅小电抗值的选取要符合行业标准，还要综合考虑短路电流大小、零序电流保护、中性点绝缘等级、接线方式等诸多因素[1]。文献[2]指出小电抗值的选取范围在变压器零序阻抗的 30%~40%，然而这种选取方式难以同时满足行业标准、限制短路电流大小、零序电流保护准确动作等一系列要求，一旦选取不当，将给变压器的安全运行带来许多隐患，目前，尚没有相关文献对此进行详细讨论，因此有必要对小电抗值的选取进行深入探讨。在综合考虑各方面因素的基础上，对变压器接地小电抗值的选取进行了深入研究，提出了小电抗值的选取方法，并以某电网 220 kV/110 kV 系统为研究对象，基于 PSCAD/EMTDC 软件进行仿真，仿真结果验证了使用本文方法进行接地小电抗值选取的合理性，有效地确保了电网的安全运行。

1 小电抗值选取考虑因素

接地小电抗值的选取要综合考虑相关行业标
准，限制单相接地短路电流、零序电流保护、变压器绝缘等级等因素。

1.1 行业标准

根据 DL/T 620—1997《交流电气装置的过电压保护和绝缘配合》规定，220 kV/110 kV 系统的零序电抗与正序电抗之比 X_0/X_1 小于 $3^{[4]}$，因此，主变压器中性点接小电抗的取值要受到该限制。为防止可能会发生的极端情况下的不对称故障危及系统安全，必须保证任何工况下系统的零序等值电抗与正序等值电抗之比均小于 $3^{[5]}$。

1.2 限制单相接地短路故障电流

单相接地故障约占电力系统故障 80%以上，单相接地短路电流大于三相短路电流的现象普遍存在。在电力系统，断路器的切断时间通常以三相短路电流为基准设计，因而断路器断开单相短路电流的时间不会发生。所以，必须按照限制单相短路电流，使其不大于三相短路电流的原则来选择接地点小电抗值 $^{[6-8]}$。

1.3 中性点绝缘等级要求

根据 GB 311.7—1988 《高压输变电设备的绝缘配合使用导则》，110 kV 系统变压器中性点为 35 kV 绝缘等级的 1 min 间频耐受电压有效值为 72 kV，则所选取的小电抗范围满足变压器中性点绝缘等级要求 $^{[9-11]}$。如果仍然不能满足要求的，可根据以下方法计算所接小电抗的值，变压器中性点电压稳态值为 $^{[12-13]}$

$$U_0 = \frac{k}{k+2}U_x$$ \tag{1}

$$k = \frac{X_0}{X_1}$$ \tag{2}

式中 U_0 为变压器中性点稳态电压；U_x 为系统相电压；X_0 为变压器中性点接入小电抗后的系统零序电抗；X_1 为系统正序电抗。

1.4 零序保护要求

对于具有 2 台并列运行变压器的变电站可以考虑在变压器中性点加装小电抗时尽量保持零序阻抗值不变，从而无需对零序电流保护动作值重新整定 $^{[14]}$。要保持零序阻抗值不变，主变压器中性点接小电抗须满足 $^{[15]}

$$\frac{1}{2}(X_0+3X_1)=X_0$$ \tag{3}

式中 X_0 为变压器零序电抗；X_1 为接小电抗的小电抗值。

中性点应该接入的小电抗为

$$X_i = \frac{1}{3}X_0$$ \tag{4}

2 系统仿真

2.1 电网建模

该系统由 2 台并列运行的三绕组 220 kV 变压器以及与之相连接的 110 kV 变压器组成。其中 220 kV 变压器由 YNyn0d11 接法，110 kV 变压器为 Ynd11 接法。T1 和 T2 主变压器容量均为 180 MVA。T3 和 T4 主变压器容量均为 63 MVA，且型号相同，高压侧均不接地。仿真模型一次系统如图 1 所示。L2 和 L3 为架空输电线路，长度分别为 13.6 km 和 21.9 km，线路和变压器参数分别如表 1 和表 2 所示。

![图 1 仿真模型一次系统](image)

表 1 220 kV 变压器主要参数

<table>
<thead>
<tr>
<th>变压器</th>
<th>高/中侧</th>
<th>高/低侧</th>
<th>中/低侧</th>
<th>空载损耗</th>
<th>铜耗</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>0.1365</td>
<td>0.2281</td>
<td>-0.0732</td>
<td>0.0055</td>
<td>0.00261</td>
</tr>
<tr>
<td>T2</td>
<td>0.1365</td>
<td>0.2281</td>
<td>-0.0732</td>
<td>0.0055</td>
<td>0.00261</td>
</tr>
</tbody>
</table>

表 2 部分线路参数设置

<table>
<thead>
<tr>
<th>线路</th>
<th>正序电抗</th>
<th>感抗</th>
<th>容抗</th>
<th>电阻</th>
<th>感抗</th>
<th>容抗</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2</td>
<td>0.0011</td>
<td>0.0032</td>
<td>0.0035</td>
<td>0.0033</td>
<td>0.0096</td>
<td>0.0012</td>
</tr>
<tr>
<td>L3</td>
<td>0.0016</td>
<td>0.0048</td>
<td>0.0029</td>
<td>0.0048</td>
<td>0.0144</td>
<td>0.0009</td>
</tr>
</tbody>
</table>

2.2 系统运行方式

该 220 kV 变电站可能出现的经小电抗接地的运行方式主要有以下 4 种 $^{[16]}$。

1) T1 主变压器的 220 kV 中性点直接接地、110 kV 侧经小电抗接地，T2 主变压器的 220 kV，110kV 侧均不接地。

2) T1 主变压器的 220 kV 直接接地，110 kV 侧
经小电抗接地, T2 主变压器中性点 220 kV 侧不接地,110 kV 侧经小电抗接地。

3)TV 主变压器的 220 kV 侧中性点直接接地、110 kV 侧经小电抗接地, T2 主变压器中性点 220 kV 侧直接接地, 110 kV 侧不接地。

4)2 台主变压器的 220 kV 侧中性点直接接地、110 kV 侧经小电抗接地。

由于方式 2 与方式 1 的正序、零序等值电抗完全相同, 方式 3 介于方式 1,4 之间,仅讨论方式 1,4, 对于方式 2,3 不再赘述。变电站 110 kV 母线发生单相接地故障时,其正序等值电抗如图 2 所示。图 3 中, X_{l1}, X_{l2} 分别为 220 kV, 110 kV 线路正序等值电抗; X_{ml}, X_{mn} 分别为 1 号主变压器高、中压侧绕组正序电抗; X_{ml1}, X_{mn1} 分别为 2 号主变压器高、中压侧绕组正序电抗。

![图 2 变电站正序等值电抗](image)

以方式 1(TV 主变压器的 220 kV 侧中性点直接接地, 110 kV 侧经小电抗接地, T2 主变压器的 220 kV, 110 kV 侧中性点不接地)为例计算应该选取的接地电抗值。在接地变压器 110 kV 侧中性点加小电抗后, 系统正序电抗、负序电抗不变, 零序电抗会发生改变。加小电抗之后, 系统零序等值电抗图如图 3 所示, 其中 X_{l1} 为 220 kV 线路零序电抗, X_{l2} 为 110 kV 线路零序电抗, X_{ml}, X_{ml1}, X_{mn}, X_{mn1} 分别为变压器高、中、低压侧零序电抗[7]。可见在接地主变压器 110 kV 侧中性点加小电抗 X_{l1} 后, 变电站系统的等值零序电抗变大, 当 220 kV 变电站中压侧发生单相接地时, 短路电流变小, 流过主变压器绕组、

中性点的电流也同时变小。

2.3 小电抗值的选取

根据 DL/T 620—1997《交流电气装置的过电压保护和绝缘配合》要求, 当系统以方式 1 运行时, 设定加人的电抗为 X_{l1}, 则有

$$\frac{X_{l1}}{X_{l1}} \leq 3$$ (5)

代入方式 1 时的参数, 解之得 X_{l1} ≤0.300 9, 换算成有名值, 则 X_{l1} ≤3.8 Ω。

对于方式 4, 同理计算得 X_{l1} ≤9.1 Ω。

按照变电站 110 kV 侧母线单相接地短路电流不大于三相短路电流的原则来选取接地电抗, 即

$$I_{g1}^2 = I_{g0}^2$$ (6)

改电站 110 kV 侧母线单相短路故障电流为[8]

$$I_{g1} = \frac{3}{2X_{l1}}$$ (7)

变电站 110 kV 侧母线三相短路故障电流为

$$I_{g0} = \frac{3}{X_{l1}}$$ (8)

将式 (6), 式 (8) 得到的数据带入式 (7), 可得 X_{l1} ≥0.65 Ω。

按照上述原则, 对于方式 4, 有 X_{l1} ≥2.86 Ω。

方式 1,4 下分别在 220 kV 变电站中压侧母线、110 kV 变电站高压侧母线设置三相接地故障, 加入小电抗前后单相接地故障电流如表 1～2 所示。B, C 变电站的主变型号相同, 小电抗值的选取原因也相同, 因此只介绍在 B 变电站高压侧母线设置故障点的情况下, C 变电站的情况相同。

| 表 1 方式 1 加入小电抗前后的短路电流 kA |
故障点	三相短路电流	加入小电抗前	加入 0.65 Ω	加入 3.8 Ω
A 变中压母线	11.57	14.62	11.56	7.99
B 变高压母线	8.99	10.73	8.97	6.63

| 表 2 方式 4 加入小电抗前后的短路电流 kA |
故障点	三相短路电流	加入小电抗前	加入 2.3 Ω	加入 9.1 Ω
A 变中压母线	12.79	16.60	12.79	7.85
B 变高压母线	9.73	11.67	9.72	6.46
从表1、表2中的故障电流可知，通过以上对于小电抗的选取，可以将单相短路故障电流限制在三相短路电流之下，从而可以暂时将方式1下的小电抗值取为0.65Ω≤Xd≤3.8Ω,方式4下的小电抗值取为2.3Ω≤Xd≤9.1Ω。

对于小电抗的选取，还要通过仿真来校验能否满足变压器中性点绝缘等级要求。

方式1下分别在220kV变电站中压侧母线、110kV变电站高压侧母线设置接地故障，加入故障前后各不接地主变压器中性点过电压稳态值、位变值对比如表3~4所示。

<table>
<thead>
<tr>
<th>故障点</th>
<th>加小电抗前</th>
<th>加0.65Ω电抗后</th>
<th>加3.8Ω电抗后</th>
</tr>
</thead>
<tbody>
<tr>
<td>A站</td>
<td>B站</td>
<td>A站</td>
<td>B站</td>
</tr>
<tr>
<td>变中压母线</td>
<td>16.76</td>
<td>16.76</td>
<td>23.62</td>
</tr>
<tr>
<td>B站变高压母线</td>
<td>12.22</td>
<td>24.16</td>
<td>18.03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>故障点</th>
<th>加小电抗前</th>
<th>加0.65Ω电抗后</th>
<th>加3.8Ω电抗后</th>
</tr>
</thead>
<tbody>
<tr>
<td>A站</td>
<td>B站</td>
<td>A站</td>
<td>B站</td>
</tr>
<tr>
<td>变中压母线</td>
<td>26.71</td>
<td>27.33</td>
<td>41.05</td>
</tr>
<tr>
<td>B站变高压母线</td>
<td>20.85</td>
<td>40.66</td>
<td>30.62</td>
</tr>
</tbody>
</table>

同样，在方式4下设置与方式1相同地点、相同类型的故障，加入小电抗后B站主变压器中性点过电压稳态值，稳态值如表5~6所示。

| 方式4 B站变压器中性点加入小电抗前后的工频暂态过电压有效值 kV |
|-----------------------------|-----------------------------|
| 加小电抗前 | 加2.3Ω电抗后 | 加9.1Ω电抗后 |
| 9.55 | 23.26 | 44.11 |
| 19.74 | 28.47 | 44.26 |

选取以上小电抗值，110kV系统在发生单相接地故障时，在方式1和方式4下变压器中性点最大工频过电压有效值分别为44.53kV和44.26kV，满足变压器中性点绝缘的要求。

显然，为限制单相接地短路电流，方式1接入小电抗之后，系统零序阻抗必定会增大，该站母线以及变压器承担的短路电流会减小，从而零序电流保护动作值也需要重新整定。

按照方式4接入小电抗时，在满足上述3点要求的前提下，可以按(5)式选取小电抗，使系统阻抗阻抗保持不变，使入数据得Xd=3.159Ω，恰好满足上述所求得到的方式4下的小电抗值范围内(2.3Ω≤Xd≤9.1Ω)，满足所有要求。若求得的小电抗值不在此范围之内，则必须放弃“尽量使零序阻抗不变”的原则，重新整定零序电流保护的动作值。

综合以上几项因素，方式1和4的小电抗范围分别为0.65~3.8Ω,2.3~9.1Ω。若方式4下选取小电抗值大小为3.159Ω时，可以无需重新整定零序电流保护的动作值。由于所接人的小电抗值越大，单相接地故障导致的变压器中性点过电压越高，不利于变压器的绝缘，同时导致通过变压器的零序电流减少，不利于继电保护装置快速动作，因此建议将小电抗在满足上述要求的前提下尽量选得小一些。

3 结论

针对变压器经小电抗接地的系统小电抗值选取问题，提出了一种小电抗值的选取方法，并在仿真软件上对选取的小电抗进行了验证。结果表明，采用该方法选取的小电抗能够满足变压器运行的要求。下一步将针对更加复杂的电力系统，进行接地小电抗值的选取和计算，为该方法充分运用于实际生产中提供可靠的理论依据。
参考文献

（上接第 62 页）总结。研究表明，钢煤斗在横向往加劲肋部为受力薄弱部位，可在今后的工程中进行加强处理。

参考文献

作者简介:
赵辉(1986), 男, 工程师, 从事变电结构设计工作；
马锋(1981), 男, 工程师, 从事变电结构设计工作；
李启宏(1984), 男, 高级工程师, 从事电厂结构设计工作。