Cause Analysis and Treatments of Spring Bracket Bolt Fracture of 500 kV Switch

ZHAO Guangfang, CHEN Ying, JIANG Lei, YIN Haolun
(State Grid Shandong Electric Power Maintenance Company, Jinan 250118, China)

Abstract: The fracture of the BA bolt of HPL500B2 spring mechanism may lead to the on-off failure of the switch. Through the analysis of the potential cause of the fracture, it is found that the force acting on the BA bolt is near the breaking point of the bolt during pre-tightening which is high enough to cause fracture in the long term service. Also, the safety coefficient of the BA bolt is only 12% which is not considered high. A check list of the standard replacement operations is issued in this paper. The adjustment steps of the opening and closing spring are introduced in detail to provide reference for handling similar events.

Keywords: spring mechanism; spring bracket bolt; mechanical characteristics; spring fatigue

0 引言

近年来，随着超高压电网的快速发展，500 kV 开关在全国范围内得到了广泛应用。早期，由于国内开关厂家对超高压开关的生产研发刚刚起步，500 kV 超高压开关多为国外公司产品，在实际运行中，检修人员发现 HPL500B2 型断路器的弹簧机构支架螺栓 (BA 螺栓) 发生了多次断裂故障，影响供电可靠性。以一起 500 kV 开关 BA 螺栓断裂故障为例，分析分析 BA 螺栓断裂原因并找出解决方法。

1 故障分析

2015–05–15，工作人员对某 500 kV 变电站巡视过程中发现，HPL500B2 型弹簧机构的机构箱内有断裂的螺栓帽，如图 1 所示。经检查发现，断裂的螺栓为 BA 支架固定螺栓，如图 2 所示。

弹簧机构支架分上下箱体 2 部分，上下 2 部分箱体依靠两端的贯穿长螺栓和上下箱体对接周围的 6 颗 BA 螺栓固定，支架起到支撑和固定内部齿轮、弹簧、传动杆等部件的作用，如图 3 所示。如果支架
上下连接不紧密，则其内部的齿轮就存在无法有效咬合的风险，导致相关保持子无法脱扣，弹簧机构无法输出能量，开关则不能进行正常的分闸、合闸工作[1]。

为探寻 BA 螺栓断裂的原因，需要分析 BA 螺栓的受力情况。正常运行时，BA 螺栓承受上下箱体的重力作用以及分合闸时弹簧巨大震动产生的水平拉力，如图 4 所示。

该型号开关所选用的 BA 螺栓为 M12.9 级高强度螺栓，允许的最大扭断力矩为 90 N·m。2012 年之前出厂的弹簧机构 BA 螺栓一直采用 79 N·m 的力矩，接近其扭断力矩，使得作用于 BA 螺栓上的力偏高，螺栓安全系数仅为 12%，安全系数较低。在弹簧机构多次大分合闸作用力冲击下，BA 螺栓即有发生断裂的可能。将 BA 螺栓的预紧固力矩降低至 45 N·m，螺栓的安全系数提高至 50%。经检查，螺栓断裂位置在杆部和头部交接处，装配拧紧时螺栓主要受扭转载荷，此时，主应力与轴线成 45°，而切应力则与轴线垂直。从断口看，裂纹开始于与轴线成 45°角，表现为扭转时的正断断口，是正应力作用的结果。而螺断区与轴线垂直，螺断区面积占总断口面积的大部分，说明螺断时应力较大或材料强度不足。

2 处理方法

若 BA 螺栓断裂，其危害主要体现在两方面：一方面，断裂的螺栓很可能落入正下方的合闸弹簧内部，造成合闸弹簧损毁，导致开关无法正常操作甚至造成机构严重损坏；另一方面，即使断裂的螺栓很幸运未落入合闸弹簧内部，剩下的螺栓受力将变大，进一步加大螺栓断裂的风险，造成连锁断裂反应。

在分合闸巨大的作用力下，容易造成上下 BA 箱体连接不牢固，使得机构齿轮难以有效咬合，造成机构无法储能，传动机构损毁等情况，导致开关无法正常操作[2]。

为解决 BA 螺栓发生断裂的问题，需对目前所用 BA 螺栓进行更换。将 BA 螺栓紧固力矩变更为 45 N·m，以降低螺栓预紧力，提高安全系数。

2.1 BA 螺栓更换注意事项

BA 螺栓更换应停电进行。在螺栓更换开始前，必须将弹簧机构的能量完全释放，并断开其控制电源及储能电源，确保作业过程中弹簧机构不会对作业人员造成人身伤害。

由于 6 颗 BA 螺栓中有 4 颗位于机构内部，无法直接拆除，需逐步拆除其外侧部件。更换顺序依次为：拆除后挡板，拆除手动储能指示牌，拆除驱动，更换 BA 螺栓。

更换完毕后，按相反顺序安装好驱动、手动储能指示牌。其中需注意以下 5 点[3]。

1)6 颗 BA 螺栓更换后的紧固力矩为 45 N·m；
2)4 颗固定驱动的螺栓紧固力矩为 40 N·m；
3)3 颗固定驱动储能指示牌的螺栓紧固力矩为 10 N·m；
4)上述螺栓紧固后，应涂抹螺栓防松胶；
5)若发现有释放的 BA 螺栓，必须找到其断裂部分，防止落入链条中。

2.2 弹簧调整步骤

HPL500B2 系列弹簧机构的分闸、合闸弹簧在出厂装配时都存在一定预压缩量，预压缩量越大，则供给分闸、合闸的能量就越大，分闸、合闸速度就越快，相应时间就越少。因此，分闸、合闸弹簧的预压缩量直接影响开关的机械特性。

按照设备生产厂家的要求，开关运行 10 年左右，其弹簧拉力下降，导致机构分合闸时间、分合闸
速度不满足要求，需做机械特性试验以检查弹簧是否疲劳并通过调节分闸、合闸弹簧的预置压力，调节分合闸速度以及分合闸时间，使各项参数符合要求。HPL500B2 系列弹簧机构机械特性的主要参数为：合闸时间 65 ms；分闸时间 18～22 ms；合分时间 30～45 ms；合闸速度 4.9～5.2 m/s；分闸速度 8.3～8.7 m/s。

合闸弹簧调整步骤。此型号的合闸弹簧压缩方式为向下压缩，先将合闸弹簧的固定螺栓松开，然后用千斤顶逐步向下压缩合闸弹簧，压缩完毕后，再将合闸弹簧的固定螺栓紧固[4]，如图 5 所示。向下压缩合闸弹簧，增大合闸弹簧的预置压力，可提高机构的合闸速度，由于行程固定不变，可减少合闸时间。注意，4 颗弹簧固定螺栓的紧固力矩为 300 N·m。

![图 5 调整合闸弹簧](image1)

![图 6 分闸弹簧安装位置](image2)

分闸弹簧调整步骤。分闸弹簧位于机构箱旁边单独分闸弹簧筒内，如图 6 所示。分闸弹簧的压缩方式为向上压缩，先将分闸弹簧的固定螺栓松开，然后对分闸弹簧进行压缩，压缩完毕后，再将分闸弹簧的固定螺栓紧固，如图 7 所示。向上压缩分闸弹簧，增大分闸弹簧的预置压力，可提高机构的分闸速度，减少分闸时间。

调整结束后，恢复所有拆下的螺栓，并重新拧紧，紧固的螺栓应做好位置标记，以后检查时可直观反映螺丝是否松动。主连接应作为重点检查紧固点，紧固力矩 300 N·m。所有螺栓紧固完毕后，传动齿轮、链条等部位涂抹润滑脂并恢复挡板。

3 结语

BA 螺栓在运行中始终受力，2012 年之前出厂的 BA 螺栓由于紧固力矩大，接近断力矩极限，螺栓安全系数低。在弹簧机构多次巨大分合闸作用力冲击下，BA 螺栓有发生断裂的可能。因此，建议结合停电更换所有 2012 年之前出厂的 ABB 弹簧机构 BA 螺栓。列出 BA 螺栓更换步骤及注意事项，并详细介绍分闸、合闸弹簧调整步骤，为螺栓更换与弹簧机构调整提供参考。

参考文献

收稿日期：2018-11-09

作者简介：
赵广方（1989），男，工程师，从事变电检修工作；
陈一鸣（1989），男，从事变电检修工作；
姜磊（1991），男，从事变电运维工作；
殷浩伦（1994），男，从事变电检修工作。